(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

.(.(x, y), z) → .(x, .(y, z))

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

.(.(z0, z1), z2) → .(z0, .(z1, z2))
Tuples:

.'(.(z0, z1), z2) → c(.'(z0, .(z1, z2)), .'(z1, z2))
S tuples:

.'(.(z0, z1), z2) → c(.'(z0, .(z1, z2)), .'(z1, z2))
K tuples:none
Defined Rule Symbols:

.

Defined Pair Symbols:

.'

Compound Symbols:

c

(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

.'(.(z0, z1), z2) → c(.'(z0, .(z1, z2)), .'(z1, z2))
We considered the (Usable) Rules:

.(.(z0, z1), z2) → .(z0, .(z1, z2))
And the Tuples:

.'(.(z0, z1), z2) → c(.'(z0, .(z1, z2)), .'(z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [4] + [4]x1 + [4]x2   
POL(.'(x1, x2)) = [1] + [4]x1   
POL(c(x1, x2)) = x1 + x2   

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

.(.(z0, z1), z2) → .(z0, .(z1, z2))
Tuples:

.'(.(z0, z1), z2) → c(.'(z0, .(z1, z2)), .'(z1, z2))
S tuples:none
K tuples:

.'(.(z0, z1), z2) → c(.'(z0, .(z1, z2)), .'(z1, z2))
Defined Rule Symbols:

.

Defined Pair Symbols:

.'

Compound Symbols:

c

(5) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(6) BOUNDS(O(1), O(1))