(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
.(.(x, y), z) → .(x, .(y, z))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
.(.(z0, z1), z2) → .(z0, .(z1, z2))
Tuples:
.'(.(z0, z1), z2) → c(.'(z0, .(z1, z2)), .'(z1, z2))
S tuples:
.'(.(z0, z1), z2) → c(.'(z0, .(z1, z2)), .'(z1, z2))
K tuples:none
Defined Rule Symbols:
.
Defined Pair Symbols:
.'
Compound Symbols:
c
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
.'(.(z0, z1), z2) → c(.'(z0, .(z1, z2)), .'(z1, z2))
We considered the (Usable) Rules:
.(.(z0, z1), z2) → .(z0, .(z1, z2))
And the Tuples:
.'(.(z0, z1), z2) → c(.'(z0, .(z1, z2)), .'(z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(.(x1, x2)) = [4] + [4]x1 + [4]x2
POL(.'(x1, x2)) = [1] + [4]x1
POL(c(x1, x2)) = x1 + x2
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
.(.(z0, z1), z2) → .(z0, .(z1, z2))
Tuples:
.'(.(z0, z1), z2) → c(.'(z0, .(z1, z2)), .'(z1, z2))
S tuples:none
K tuples:
.'(.(z0, z1), z2) → c(.'(z0, .(z1, z2)), .'(z1, z2))
Defined Rule Symbols:
.
Defined Pair Symbols:
.'
Compound Symbols:
c
(5) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(6) BOUNDS(O(1), O(1))